Mathematics – Geometry

Practice Test Answer and Alignment Document

Pencil-and-Paper ABO

The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items.

- The rubrics show sample student responses. Other valid methods for solving the problem can earn full credit unless a specific method is required by the item.
- In items where the scores are awarded for full and partial credit, the definition of partial credit will be confirmed during range-finding (reviewing sets of real student work).
- If students make a computation error, they can still earn points for reasoning or modeling.

ltem Number	Answer Key	Evidence Statement Key/Content Scope	Integrated Course Alignment
1.	Part A: -1	G-GPE.1-2	3
2.	8.5	G-GPE.6	3
3.	Part A: D , E Part B: C , E	G-CO.C	2
4.	Α	G-SRT.6	2
5.	В	G-C.B	3
6.	Α, Ε	G-SRT.2	2
7.	E	G-SRT.7-2	2
8.	Part A: B Part B: A	G-CO.D	3
9.	Part A: see rubric Part B: see rubric	HS.D.1-2	2
10.	Α, Ε	G-SRT.2	2

Unit 1

11.	В	G-CO.3	1
12.	Part A: 3.4 Part B: C	G-SRT.8	2
13.	С	G-GMD.4	3
14.	See rubric	HS.D.2-2	2
15.	C, D, E, F	G-CO.6	1
16.	Part A : 1326 Part B : B	G-Int.1	3

Unit 2

ltem Number	Answer Key	Evidence Statement Key/Content Scope	Integrated Course Alignment
17.	Part A: see rubric Part B: see rubric	HS.C.13.2	3
18.	В	G-SRT.1a	2
19.	D	G-SRT.1b	2
20.	A range of "30 to 30.03"	G-SRT.8	2
21.	B, F	G-CO.1	1
22.	Part A: see rubric Part B: see rubric	HS.C.18.2	None
23.	В	G-GMD.3	2
24.	С	G-SRT.7-2	2
25.	See rubric	HS.C.14.5	2
26.	Part A: see rubric Part B: see rubric Part C: see rubric	HS.D.2-11	2
27.	B, F	G-GMD.1	2
28.	С	G-CO.6	1
29.	D	G-SRT.5	2

Rubrics start on the next page.

	Unit 1 #9 Part A Rubric		
Score	Description		
	 Student response includes each of the following 3 elements: Correct identification of the shape of the exposed surface as a rectangle Correct area of the rectangle Valid work shown 		
3	Sample Student Response: The shape of the exposed surface is a rectangle. The width of this rectangle is the length of one edge of the cube, which is 10 inches. The length of the rectangle, <i>d</i> , is the length of the diagonal of a square face of the cube. To find this length, apply the Pythagorean Theorem. $c^2 = a^2 + b^2$		
	$d^{2} = 10^{2} + 10^{2}$ $d^{2} = 200$ $d = \sqrt{200} \approx 14.1 \text{ (inches)}$ The length of the diagonal of a face of the cube is approximately 14.1 inches. The area of the rectangle (exposed surface) is $10\sqrt{200} \approx 141$ square inches.		
2	Student response includes 2 of the 3 elements.		
1	Student response includes 1 of the 3 elements.		
0	Student response is incorrect or irrelevant.		

	Unit 1 #9 Part B Rubric
Score	Description
	Student response includes each of the following 3 elements:
	 Correct conclusion that the volume of clay in the chunk is 500 cubic inches
	• Correct conclusion that the volume of each clay sphere is $\frac{32}{3}\pi$
3	 cubic inches, or approximately 33.5 cubic inches Correct conclusion that Daniel can make 14 clay spheres, with calculations to support that conclusion
	Sample Student Response:
	The volume of each congruent chunk is half the volume of the

	entire block. The volume of the cube is (10 inches) ³ , or 1,000
	cubic inches. So the volume of each congruent chunk of clay is
	500 cubic inches.
	Each sphere will have a diameter of 4 inches and a radius of 2
	inches. The volume of each clay sphere will be
	$\frac{4}{3}\pi$ (2 inches) ³ , or $\frac{32}{3}\pi$ cubic inches. This is approximately
	33.5 cubic inches.
	To find the number of spheres that Daniel can make from the
	chunk of clay, divide the volume of the full chunk of clay, by
	the volume of one sphere: 500 \div 33.5 \approx 14.9.
	The result of 14.9 means that there is enough clay in the
	chunk to make 14 clay spheres because there is not enough
	clay to make 15 complete spheres.
2	Student response includes 2 of the above elements.
1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.

	Unit 1 #14 Rubric		
Score	Description		
	 Student response includes each of the following 3 elements: Valid values for h₁ and h₂ Valid approach for determining h₁ and h₂ Verification that the design will store at least 2 dump-truck loads of fertilizer Sample Student Response: 		
3	Assuming the dump trucks are rectangular prisms, each dump truck stores 288 cubic feet of fertilizer (4 × 6 × 12 = 288). Two dump trucks will store 576 cubic feet of fertilizer. The volume of the storage building needs to be at least 576 cubic feet. The volume of the storage building equals the volume of the cylinder plus the volume of the cone. I used the maximum diameter of 8 feet. $\pi r^2 h_1 + \frac{1}{3} \pi r^2 h_2$ $\pi 4^2 h_1 + \frac{1}{3} \pi 4^2 h_2$ I used the maximum total height of 14 feet. Since the volume of a cone involves dividing by 3, I made the height of the cone much smaller than the height of the cylinder.		

	$\pi 4^2 h_1 + \frac{1}{3} \pi 4^2 h_2$
	$\pi 4^{2}(11) + \frac{1}{3}\pi 4^{2}(3) \approx 603.16$
	Using $h_1 = 11$ feet and $h_2 = 3$ feet, the storage building will
	have a volume greater than 576 cubic feet.
	Note: Any two heights that have a sum of 14 and create a volume
	greater than 576 are acceptable.
2	Student response includes 2 of the above elements.
1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.

	Unit 2 #17 Part A Rubric		
Score	Description		
	Student response includes the following element:		
	• Correct coordinates of point <i>Q</i> in terms of <i>a</i> , <i>b</i> , and <i>c</i> .		
1	Sample Student Response:		
	(2a + 2b, 2c) or equivalent		
	Note: Students are not required to show work, but will not be penalized for showing work.		
0	Student response is incorrect or irrelevant.		

Unit 2 #17 Part B Rubric		
Score	Description	
	Student response includes each of the following 2 elements:	
	• Student states that the midpoint of \overline{SQ} must be the same as	
	the midpoint of \overline{PR}	
	 Provides evidence using appropriate mathematical strategies, 	
	reasoning, and/or approaches that verifies \overline{SQ} and \overline{PR} bisect	
2	each other	
	Sample Student Response:	
	\overline{SQ} bisects \overline{PR} and \overline{PR} bisects \overline{SQ}	
	I know this because the midpoint of \overline{SQ} has the same coordinates as	
	the midpoint of \overline{PR} , as shown.	

6

	midpoint of $\overline{SQ} = \left(\frac{0+2a+2b}{2}, \frac{0+2c}{2}\right)$ $= \left(\frac{2a+2b}{2}, \frac{2c}{2}\right)$ $= (a + b, c)$ midpoint of $\overline{PP} = \left(\frac{2a+2b}{2}, \frac{0+2c}{2}\right)$
	Since the point of intersection of \overline{SO} and \overline{PP} is the midpoint of both
	segments, SQ and PR bisect each other.
1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.

Score	Description Student response includes each of the following 3 elements:
	Student response includes each of the following 3 elements:
	 Determination that BE = 16 and DE = 16 Correct algebraic reasoning Recognition of an extraneous solution
	Sample Student Response: Because the figure is a parallelogram, the diagonals bisect each other. $x^2 - 48 = 2x$
3	$x^{2} - 2x - 48 = 0$ (x - 8)(x + 6) = 0 x = 8 or x = -6 x = -6 is not possible because 2x would equal -12 and
	length is not negative. So $x = 8$, $BE = 8^2 - 48 = 16$, and $DE = 2(8) = 16$
	 Notes: If the student makes an error in writing the equation and gets two answers that work, the student must show both solutions to earn the second point. If the student makes a computation error and finds that the diagonals are not congruent, the third reasoning point can be

	rectangle.
2	Student response includes 2 of the above elements.
1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.

Unit 2 #22 Part B Rubric	
Score	Description
	Student response includes the following element:
	 Explanation of why the parallelogram is a rectangle or that diagonals are congruent.
1	Sample Student Response:
	ABCD is a rectangle. Because the lengths AE, BE, CE, and DE are
	all equal to 16, the diagonals are congruent and parallelogram ABCD
	is a rectangle.
0	Student response is incorrect or irrelevant.

ScoreDescriptionStudent has complete valid proof with valid chains of reasoning. Student Sample Response: Given: \overrightarrow{AB} is the image of \overrightarrow{AB} after a dilation centered at point C and with scale factor k, $k > 0$. Prove: $\overrightarrow{AB} = k \Box AB$.1. \overrightarrow{AB} is the image of \overrightarrow{AB} after a dilation centered at point C and with scale factor k, $k > 0$. Prove: $\overrightarrow{AB} = k \Box AB$.31. \overrightarrow{AB} is the image of \overrightarrow{AB} after a dilation centered at point C and with scale factor k, $k > 0$. [given] 2. $CA' = k \Box CA$; $CB = k \Box CB$ [definition of dilation] 3. $\overrightarrow{CA} = k; \ \overrightarrow{CB} = k;$ [Division Property of Equality] 4. $\ \overrightarrow{CA} = \ \overrightarrow{CB} \ \overrightarrow{CB} = k;$ [Division Property of Equality] 5. $\angle C \cong \angle C$ [Reflexive Property of Congruence] 6. $\Box ACB \Box \Box ACB \ \Box ACB$ [SAS Triangle Similarity] 7. $\ \overrightarrow{AB} = \ \overrightarrow{CA} = \ \overrightarrow{CB} \ \overrightarrow{CB} \$ [definition of similar polygons] 8. $\ \overrightarrow{AB} = k$ [Substitution Property of Equality]		Unit 2 #25 Rubric
Student has complete valid proof with valid chains of reasoning. Student Sample Response: Given: \overrightarrow{AB} is the image of \overrightarrow{AB} after a dilation centered at point C and with scale factor k, $k > 0$. Prove: $\overrightarrow{AB} = k \square AB$. 1. $\overrightarrow{A'B}$ is the image of \overrightarrow{AB} after a dilation centered at point C and with scale factor k, $k > 0$. [given] 2. $CA' = k \square CA$; $CB = k \square CB$ [definition of dilation] 3. $\frac{CA}{CA} = k$; $\frac{CB}{CB} = k$; [Division Property of Equality] 4. $\frac{CA}{CA} = \frac{CB}{CB}$ [Transitive Property of Equality] 5. $\angle C \cong \angle C$ [Reflexive Property of Congruence] 6. $\square ACB \square \square A'CB$ [SAS Triangle Similarity] 7. $\frac{AB}{AB} = \frac{CA}{CA} = \frac{CB}{CB}$ [definition of similar polygons] 8. $\frac{AB}{AB} = k$ [Substitution Property of Equality]	Score	Description
Given: <i>A'B</i> is the image of <i>AB</i> after a dilation centered at point <i>C</i> and with scale factor <i>k</i> , $k > 0$. Prove: <i>A'B</i> = $k \square AB$. 1. $\overrightarrow{A'B}$ is the image of \overrightarrow{AB} after a dilation centered at point <i>C</i> and with scale factor <i>k</i> , $k > 0$. [given] 2. $CA' = k \square CA$; $CB = k \square CB$ [definition of dilation] 3. $\frac{CA'}{CA} = k$; $\frac{CB}{CB} = k$; [Division Property of Equality] 4. $\frac{CA}{CA} = \frac{CB}{CB}$ [Transitive Property of Equality] 5. $\angle C \cong \angle C$ [Reflexive Property of Congruence] 6. $\square ACB \square \square A'CB$ [SAS Triangle Similarity] 7. $\frac{AB}{AB} = \frac{CA'}{CA} = \frac{CB}{CB}$ [definition of similar polygons] 8. $\frac{A'B}{AB} = k$ [Substitution Property of Equality]		Student has complete valid proof with valid chains of reasoning. Student Sample Response:
3 1. \overrightarrow{AB} is the image of \overrightarrow{AB} after a dilation centered at point <i>C</i> and with scale factor <i>k</i> , <i>k</i> > 0. [given] 2. $CA' = k \square CA$; $CB = k \square CB$ [definition of dilation] 3. $\frac{CA'}{CA} = k$; $\frac{CB}{CB} = k$; [Division Property of Equality] 4. $\frac{CA'}{CA} = \frac{CB}{CB}$ [Transitive Property of Equality] 5. $\angle C \cong \angle C$ [Reflexive Property of Congruence] 6. $\square ACB \square \square A'CB$ [SAS Triangle Similarity] 7. $\frac{AB}{AB} = \frac{CA}{CA} = \frac{CB}{CB}$ [definition of similar polygons] 8. $\frac{A'B}{AB} = k$ [Substitution Property of Equality]		Given: $A'B'$ is the image of AB after a dilation centered at point C and with scale factor k , $k > 0$. Prove: $A'B' = k \Box AB$.
9 $A'B' - k \Box AB$ [Multiplication Property of Equality]	3	1. \overrightarrow{AB} is the image of \overrightarrow{AB} after a dilation centered at point <i>C</i> and with scale factor <i>k</i> , <i>k</i> > 0. [given] 2. $\overrightarrow{CA} = k \square \overrightarrow{CA}$; $\overrightarrow{CB} = k \square \overrightarrow{CB}$ [definition of dilation] 3. $\frac{\overrightarrow{CA}}{\overrightarrow{CA}} = k$; $\frac{\overrightarrow{CB}}{\overrightarrow{CB}} = k$; [Division Property of Equality] 4. $\frac{\overrightarrow{CA}}{\overrightarrow{CA}} = \frac{\overrightarrow{CB}}{\overrightarrow{CB}}$ [Transitive Property of Equality] 5. $\angle C \cong \angle C$ [Reflexive Property of Congruence] 6. $\square ACB \square \square A'CB$ [SAS Triangle Similarity] 7. $\frac{\overrightarrow{AB}}{\overrightarrow{AB}} = \frac{\overrightarrow{CA}}{\overrightarrow{CA}} = \frac{\overrightarrow{CB}}{\overrightarrow{CB}}$ [definition of similar polygons] 8. $\frac{\overrightarrow{AB}}{\overrightarrow{AB}} = k$ [Substitution Property of Equality]

	Student response contains a valid chain of reasoning but may omit
2	some information. The student must include the SAS Triangle
	Similarity property correctly.
1	Student response includes valid justified steps, but is an incomplete
	proof.
0	Student response is incorrect or irrelevant.

	Unit 2 #26 Part A Rubric
Score	Description
	Student response includes each of the following 2 elements:
	 The surface area of the roof is approximately 396 square foot
	Valid work shown
	Sample Student Response:
	The angle consists of two parts – the right angle created by the
	side of the shed, and the top of the rectangular side and the
2	acute angle used to form a right triangle.
	For a 125° angle, the right triangle of the roof line has an
	angle of 35° and an adjacent side of 9. Each side of the roof is
	a rectangle with one side measuring 18 feet and the other side
	measuring $\frac{9}{\cos 35}$ feet.
	$2 \times 18 \times \frac{9}{\cos 35} \approx 395.5$
	The area of the roof is approximately 395.5 square feet.
1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.

Unit 2 #26 Part B Rubric	
Score	Description
2	Student response includes each of the following 2 elements: • Decision of "no" with valid reason • Valid explanation Sample Student Response: A 10% decrease in the roof area obtained in Part A is about 356 square feet which means one rectangle would have an area of about 178 square feet. $0.9 \times 396 = 356.4$ $\frac{356.4}{2} = 178.2$

	If the base of the rectangle remains 18 feet, then one side of
	the rectangle representing the roof will be 18 feet and the
	other side will be 178/18 which is about 9.9 feet or 10 feet.
	Then, I could form a right triangle to find the angle measure
	and use the equation $cos(x) = \frac{9}{9.9}$ which gives an
	approximate value of 25°. The angle would be about
	$25^{\circ} + 90^{\circ} = 115^{\circ}$, and this would not meet the minimum
	requirement of 117°.
	Notes:
	 The decision "no" can only be awarded 1 point if it is
	accompanied by a valid reason.
	 It is possible that a wrong surface area in Part A could yield a
	"yes" answer in Part B. Such answers should be considered
	correct if accompanied by a valid reason.
1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.

ScoreDescriptionStudent response includes each of the following 2 elements:• Greatest angle of approximately 122.7• Valid work shownSample Student Response: The builder's budget means that he can buy at most 11 bundles of shingles. $\frac{325}{27.75} \approx 11.71$ Because each bundle covers 35 square feet, the greatest surface area for one side of the roof is 192.5 square feet. This means that the greatest length the side of the roof can be is about 10.7 feet. $\frac{35 \times 11}{2} = 192.5$ $\frac{192.5}{18} \approx 10.69$ $\cos(z) = \frac{9}{10.69}$ $z \approx 32.6578^{\circ}$		Unit 2 #26 Part C Rubric
Student response includes each of the following 2 elements: • Greatest angle of approximately 122.7 • Valid work shown Sample Student Response: The builder's budget means that he can buy at most 11 bundles of shingles. $\frac{325}{27.75} \approx 11.71$ Because each bundle covers 35 square feet, the greatest surface area for one side of the roof is 192.5 square feet. This means that the greatest length the side of the roof can be is about 10.7 feet. $\frac{35 \times 11}{2} = 192.5$ $\frac{192.5}{18} \approx 10.69$ $\cos(z) = \frac{9}{10.69}$ $z \approx 32.6578^{\circ}$	Score	Description
2 bundles of shingles. $\frac{325}{27.75} \approx 11.71$ Because each bundle covers 35 square feet, the greatest surface area for one side of the roof is 192.5 square feet. This means that the greatest length the side of the roof can be is about 10.7 feet. $\frac{35 \times 11}{2} = 192.5$ $\frac{192.5}{18} \approx 10.69$ $\cos(z) = \frac{9}{10.69}$ $z \approx 32.6578^{\circ}$		 Student response includes each of the following 2 elements: Greatest angle of approximately 122.7 Valid work shown Sample Student Response: The builder's budget means that he can buy at most 11
Therefore, the angle would need to be less than	2	bundles of shingles. $\frac{325}{27.75} \approx 11.71$ Because each bundle covers 35 square feet, the greatest surface area for one side of the roof is 192.5 square feet. This means that the greatest length the side of the roof can be is about 10.7 feet. $\frac{35 \times 11}{2} = 192.5$ $\frac{192.5}{18} \approx 10.69$ $\cos(z) = \frac{9}{10.69}$ $z \approx 32.6578^{\circ}$ Therefore, the angle would need to be less than

1	Student response includes 1 of the above elements.
0	Student response is incorrect or irrelevant.